Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Road Feel Modeling and Return Control Strategy for Steer-by-Wire Systems

2024-04-09
2024-01-2316
The steer-by-wire (SBW) system, an integral component of the drive-by-wire chassis responsible for controlling the lateral motion of a vehicle, plays a pivotal role in enhancing vehicle safety. However, it poses a unique challenge concerning steering wheel return control, primarily due to its fundamental characteristic of severing the mechanical connection between the steering wheel and the turning wheel. This disconnect results in the inability to directly transmit the self-aligning torque to the steering wheel, giving rise to complications in ensuring a seamless return process. In order to realize precise control of steering wheel return, solving the problem of insufficient low-speed return and high-speed return overshoot of the steering wheel of the SBW system, this paper proposes a steering wheel active return control strategy for SBW system based on the backstepping control method.
Technical Paper

Development of a Dual Motor Beam eAxle for Medium Duty Commercial Vehicle Application

2024-04-09
2024-01-2162
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development.
Technical Paper

Advanced Development of e-HMI Road Content Projection Headlamp

2024-04-09
2024-01-2232
Recently, with the advancement of autonomous driving technology, the function of external lamps has been changed. Previously, the focus was on the visibility of drivers, but with the advancement of autonomous driving technology, the concept of autonomous driving systems has been developed. Accordingly, the trend of automotive lamp lighting systems has been developed in terms of design, e-HMI (exterior-human machine interface), It is developing in accordance with three major fields such as sensor connection. Therefore, this paper will cover the prior development of road content projection headlamps that enable e-HMI implementation to reflect these new trends. Since the technology is mass-produced and sold by several manufacturers, our company also needs to quickly develop and apply the technology in advance. Only four types of symbols are allowed in European law.
Technical Paper

Optimization of Body Parts Specifications Using A.I Technology

2024-04-09
2024-01-2017
Optimizing the specifications of the parts that make up the vehicle is essential to develop a high performance and quality vehicle with price competitiveness. Optimizing parts specifications for quality and affordability means optimizing various factors such as engineering design specifications and manufacturing processes of parts. This optimization process must be carried out in the early stages of development to maximize its effectiveness. Therefore, in this paper, we studied the methodology of building a database for parts of already developed vehicles and optimizing them on a data basis. A methodology for collecting, standardizing, and analyzing data was studied to define information necessary for specification optimization. In addition, AI technology was used to derive optimization specifications based on the 3D shape of the parts. Through this study, body parts specification optimization system using AI technology was developed.
Technical Paper

Validation and Analysis of Driving Safety Assessment Metrics in Real-world Car-Following Scenarios with Aerial Videos

2024-04-09
2024-01-2020
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles.
Technical Paper

Digital Twin Based Multi-Vehicle Cooperative Warning System on Mountain Roads

2024-04-09
2024-01-1999
Compared with urban areas, the road surface in mountainous areas generally has a larger slope, larger curvature and narrower width, and the vehicle may roll over and other dangers on such a road. In the case of limited driver information, if the two cars on the mountain road approach fast, it is very likely to occur road blockage or even collision. Multi-vehicle cooperative control technology can integrate the driving data of nearby vehicles, expand the perception range of vehicles, assist driving through multi-objective optimization algorithm, and improve the driving safety and traffic system reliability. Most existing studies on cooperative control of multiple vehicles is mainly focused on urban areas with stable environment, while ignoring complex conditions in mountainous areas and the influence of driver status. In this study, a digital twin based multi-vehicle cooperative warning system was proposed to improve the safety of multiple vehicles on mountain roads.
Technical Paper

Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

2024-04-09
2024-01-2003
As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy.
Technical Paper

Reinforcement Learning in Optimizing the Electric Vehicle Battery System Coupling with Driving Behaviors

2024-04-09
2024-01-2006
Battery Run-down under the Electric Vehicle Operation (BREVO) model is a model that links the driver’s travel pattern to physics-based battery degradation and powertrain energy consumption models. The model simulates the impacts of charging behavior, charging rate, driving patterns, and multiple energy management modules on battery capacity degradation. This study implements reinforcement learning (RL) to the simplified BREVO model to optimize drivers’ decisions on charging such as charging rate, charging time, and charging capacity needed. This is done by a reward function that considers both the driver’s daily travel demands and the minimization of battery degradation over a year. It shows that using appropriate charger type (No Charge, Level 1, Level 2, direct-current Fast Charge [DCFC], extreme Fast Charging [xFC]) with an appropriate charging time can reduce battery degradation and total charging cost at the end of the year while satisfying driver’s daily travel demand.
Technical Paper

“FEV’s ‘CogniSafe’: An Innovative Deep Learning-Based AI Driver Monitoring System for the Future of Mobility”

2024-04-09
2024-01-2012
Driver state monitoring is a crucial technology for enhancing road safety and preventing human error-caused accidents in the era of autonomous vehicles. This paper presents CogniSafe, a comprehensive driver monitoring system that uses deep learning and computer vision methods to detect various types of driver distractions and fatigue. CogniSafe consists of four modules: Driver anomaly detection and classification: A novel two-phase network that proposes and recognizes driver anomalies, such as texting, drinking, and adjusting radios, using multimodal and multiview input. Gaze estimation: A video-based neural network that jointly learns head pose and gaze dynamics, achieving robust and efficient gaze estimation across different head poses. Eye state analysis: A multi-tasking CNN that encodes features from both eye and mouth regions, predicting the percentage of eye closure (PERCLOS) and the frequency of mouth opening (FOM).
Technical Paper

Towards the Interpretation of Customizable Imitation Learning of Human Driving Behavior in Mixed Traffic Scenarios

2024-04-09
2024-01-2009
With further development of autonomous vehicles additional challenges appear. One of these challenges arises in the context of mixed traffic scenarios where automated and autonomous vehicles coexist with manually operated vehicles as well as other road users such as cyclists and pedestrians. In this evolving landscape, understanding, predicting, and mimicking human driving behavior is becoming not only a challenging but also a compelling facet of autonomous driving research. This is necessary not only for safety reasons, but also to promote trust in artificial intelligence (AI), especially in self-driving cars where trust is often compromised by the opacity of neural network models. The central goal of this study is therefore to address this trust issue. A common approach to imitate human driving behavior through expert demonstrations is imitation learning (IL). However, balancing performance and explainability in these models is a major challenge.
Technical Paper

Research on Occupant Injury Prediction Method of Vehicle Emergency Call System Based on Machine Learning

2024-04-09
2024-01-2010
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model.
Technical Paper

Bridging the Design Gap: Next-Level Automation in Automotive Design with the IncQuery AUTOSAR-UML Bridge

2024-04-09
2024-01-2050
The IncQuery AUTOSAR-UML Bridge is an innovative solution for Assisted Documentation Creation and Automated Handover, aiming at driving a paradigm shift in integrated digital engineering in the automotive domain. The AUTOSAR-UML Bridge is addressing a well-known gap in the engineering ecosystem of automotive design, where the co-design of AUTOSAR models and other model-based artifacts is often hampered by tedious workflows involving manual syncing of model contents between AUTOSAR and UML/SysML tools. The Bridge is aiming at streamlining the workflow by generating high-quality UML models from AUTOSAR projects, with built-in ISO26262 and ASPICE compliance. Automotive software architects and systems engineers spend a lot of time with creating ISO26262-compliant documentation, by creating UML models from AUTOSAR architecture designs, or establishing traceability between requirements captured in SysML and design artefacts that exist in both modeling languages.
Technical Paper

Approaches for Developing and Evaluating Emerging Partial Driving Automation System HMIs

2024-04-09
2024-01-2055
Level 2 (L2) partial driving automation systems are rapidly emerging in the marketplace. L2 systems provide sustained automatic longitudinal and lateral vehicle motion control, reducing the need for drivers to continuously brake, accelerate and steer. Drivers, however, remain critically responsible for safely detecting and responding to objects and events. This paper summarizes variations of L2 systems (hands-on and/or hands-free) and considers human drivers’ roles when using L2 systems and for designing Human-Machine Interfaces (HMIs), including Driver Monitoring Systems (DMSs). In addition, approaches for examining potential unintended consequences of L2 usage and evaluating L2 HMIs, including field safety effect examination, are reviewed. The aim of this paper is to guide L2 system HMI development and L2 system evaluations, especially in the field, to support safe L2 deployment, promote L2 system improvements, and ensure well-informed L2 policy decision-making.
Technical Paper

Enhancing Safety Features of Advanced Driver Assistance System Warnings by Using Head-Up Displays

2024-04-09
2024-01-2058
ADAS (Advanced Driver Assistance Systems) is a growing technology in automotive industry, intended to provide safety and comfort to the passengers with the help of variety of sensors like radar, camera, LIDAR etc. Though ADAS improved safety of passengers comparing to conventional non-ADAS vehicles, still it has some grey areas for safety enhancement and easy assistance to drivers. BSW (Blind Spot Warning) and LCA (Lane Change Assist) are ADAS function which assists the driver for lane changing. BSW alerts the driver about the vehicles which are in blind zone in adjacent lanes and LCA alerts the driver about approaching vehicles at a high velocity in adjacent lanes. In current ADAS systems, BSW and LCA alerts are given as optical and acoustic warnings which is placed in vehicle side mirrors. During lane change the driver must see the side mirrors to take a decision.
Technical Paper

A Study of Charge Point Infrastructure Policies on EV Driver Satisfaction

2024-04-09
2024-01-2033
This paper presents a simulation approach to assess the impact of changes to the charge point infrastructure and policies on Electric Vehicle (EV) user satisfaction, combining both market drivers with the practicalities of EV usage. An agent-based model (ABM) approach is developed where a large number of EVs, that represent the user population, drive within a region of interest. By simulating the driver’s response to their charging experience, the model allows large scale trends to emerge from the population to guide infrastructure policies as the number of EVs increases beyond the initial early adopter market. The model incorporates a Monte Carlo approach to generate EV and driver agent instances with distinct characteristics, including battery size, vehicle type, driving style, sensitivity to range. The driver model is constructed to respond to events that may increase range anxiety, e.g. increasing the likelihood of charging as the driver becomes more anxious.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Research on Intelligent Shift Strategy for Heavy Vehicles Based on Predictive Information

2024-04-09
2024-01-2140
By installing an automated mechanical transmission (AMT) on heavy-duty vehicles and developing a reasonable shift strategy, it can reduce driver fatigue and eliminate technical differences among drivers, improving vehicle performance. However, after detaching from the experience of good drivers, the current shifting strategy is limited to the vehicle state at the current moment, and cannot make predictive judgment of the road environment ahead, and problems such as cyclic shifting will occur due to insufficient power when driving on the ramp. To improve the adaptability of heavy-duty truck shift strategy to dynamic driving environments, this paper first analyzes the shortcomings of existing traditional heavy-duty truck shift strategies on slopes, and develops a comprehensive performance shift strategy incorporating slope factors. Based on this, forward-looking information is introduced to propose a predictive intelligent shift strategy that balances power and economy.
Technical Paper

A Novel Approach to Define and Validate Market Representative Routes for IUPRm Development in India

2024-04-09
2024-01-2599
To promote real time monitoring, In use performance ratio monitoring “IUPRm” checks has been enforced in India from Apr’23 as a part of BS6-2 regulation. Since IUPRm is representative of diagnostic frequency in real driving conditions and usage pattern. therefore, a clear understanding of real-world driving is required to define IUPRm targets. This paper shares methodology and Validation steps for defining IUPRm routes for Indian market. Methodology objective is to standardize the market operating conditions over a particular region. Selected Methodology consist of three steps: For defining IUPRm route framework, first step is to have a pre-market survey to know current In use performance ratio “IUPR” status and improvement areas in existing market vehicles. Second step is to define market representative localized on road routes based on the finding of Pre-market survey.
Technical Paper

Comparative Analysis of Clustering Algorithms Based on Driver Steering Characteristics

2024-04-09
2024-01-2570
Driver steering feature clustering aims to understand driver behavior and the decision-making process through the analysis of driver steering data. It seeks to comprehend various steering characteristics exhibited by drivers, providing valuable insights into road safety, driver assistance systems, and traffic management. The primary objective of this study is to thoroughly explore the practical applications of various clustering algorithms in processing driver steering data and to compare their performance and applicability. In this paper, principal component analysis was employed to reduce the dimension of the selected steering feature parameters. Subsequently, K-means, fuzzy C-means, the density-based spatial clustering algorithm, and other algorithms were used for clustering analysis, and finally, the Calinski-Harabasz index was employed to evaluate the clustering results. Furthermore, the driver steering features were categorized into lateral and longitudinal categories.
Technical Paper

A Naturalistic Driving Study for Lane Change Detection and Personalization

2024-04-09
2024-01-2568
Driver Assistance and Autonomous Driving features are becoming nearly ubiquitous in new vehicles. The intent of the Driver Assistant features is to assist the driver in making safer decisions. The intent of Autonomous Driving features is to execute vehicle maneuvers, without human intervention, in a safe manner. The overall goal of Driver Assistance and Autonomous Driving features is to reduce accidents, injuries, and deaths with a comforting driving experience. However, different drivers can react differently to advanced automated driving technology. It is therefore important to consider and improve the adaptability of these advances based on driver behavior. In this paper, a human-centric approach is adopted to provide an enriching driving experience. We perform data analysis of the naturalistic behavior of drivers when performing lane change maneuvers by extracting features from extensive Second Strategic Highway Research Program (SHRP2) data of over 5,400,000 data files.
X